Fundamentals of Data Structures with C 93

fp = fopen("std.dat", "a");

printf ("Enter No. of student records: ");

scanf ("%d", &n);

printf ("Enter student info:\n<USN><Name><Marks>:\n");

for (i = 0; i< n; i++)

{
scanf ("%¥d%s%d", &s.USN, s.Name, &s.Marks) ;
fwrite(&s, sizeof(s), 1, fp);

}

fclose(fp);

/* display all student records */

fp = fopen("std.dat", "r");

if ('fp)

{
printf ("Error in reading file\n");
exit(1l);

}

printf ("Student Records in the file:\n");

printf("------—m e~ \n");

/* reads one record from file */
while (fread(&s,sizeof(s),1,fp))
printf("$d %s %d\n", s.USN,s.Name,s.Marks);
fclose(fp);
}
Sample Run

Enter No. of student records: 2
Enter student info:
<USN><Name><Marks>:

111 Nandagopalan 98

222 Deeapk 46

Student Records in the file:
111 Nandagopalan 98

222 Deeapk 46

(1) Since the records are stored sequentially (like an audio cassette), we should be able
to add any new student record(s) with out destroying the old contents. Hence, the file
std.dat is opened in "a" (append) mode instead of "w" (write) mode.

(2) Each student record read from the user is stored in the disk file using fwrite().

(3) All the student records are displayed reading one record at a time using fread().

(4) After writing to disk file using fwrite() don't try to display the contents of the file
using DOS's TYPE command, because it is a binary write and not text write.

94 Chapter1 » introductionto C

1.13.7 Formatted I/O - fscanf() and fprintf()

When we wish to read/write mixed type of data the best method is to use formatted I/O.
This is achieved by using fscanf{) and fprintf{). Assume that a data file contains some
integer data (file has been created with an editor) that is to be processed. To read and
store it back with integer (or any other standard data type) data type we use fscanf{) and
fprintf{). The syntax of these two functions are shown below:

int fscanf (FILE *fp, char *format, arg-list);
int printf (FILE *fp, char *format, arg-list);

Parameters:
fp - file pointer of opened stream.
format - %d, %f, etc.
arg-1list - list of variables.

Return value:
= On success, it returns number of variables read.
= If returned value is 0, no fields were stored.

To understand the working of these two functions see Program 1.44

Program 1.44
To add two integers from a data file

#include <stdio.h>
#include <stdlib.h>
void main()
{
FILE *fp;
int x, y, z = 0;
fp = fopen("in.dat", "r");
if (fp == NULL)
{
printf ("Error in opening file <press Enter key>\n");
exit(1l);
}
while (!feof(fp))
{
fscanf (fp, "%d%d", &x, &y);
zZ =X +V;
}
printf ("Result=%d+%d=%d\n", x, y, 2);

Fundamentals of Data Structures with C 95

Sample Run

Assuming contents of <in.dat> as:
10 20
Result=10+20=30

You can use fprintf to store the result or any formatted data to a disk file.

1.13.8 Additional Examples

This section gives some more programs for I/O file operations.

Program 1.45
Merge two text files and store it in another file

/* Program to copy filel & file2 into file3 */
/* file3 = filel + file2 */
#include <stdio.h>
#include <stdlib.h>
void main()
{

FILE *infilel, *infile2, *outfile;

char fnamel([25], fname2[25};

int c;

printf ("Enter the 1lst file name : ");
scanf("%s", fnamel) ;
infilel = fopen(fnamel, "r");

if (infilel == NULL)

{
printf ("Error in opening file\n");
exit(1l);

}

printf ("Enter the 2nd file name : ");

scanf("%$s", fname2):;

infile2 = fopen(fname2, "r");

if (infile2 == NULL)

{
printf ("Exror in opening file\n");
exit(1l);

}

/* file is read, write and append */

96 Chapter1 » Introduction to C

outfile = fopen("out.txt", "a+"):

if (outfile == NULL)

{
printf ("Error in opening file\n");
exit(1l);

}

while ((c = getc(infilel)) != EOF)
putc(c, outfile);

while ((c = getc(infile2)) != EOF)

putc(c, outfile);
rewind(outfile);
printf ("The Merged file contents:\n\n");

while ((c = getc(outfile)) != EOF)
putc(c, stdout); /* printing on the console */

}
Sample Run

Enter the 1lst file name : fl.txt
Enter the 2nd file name : f2.txt
The Merged file contents:

File-1 contents
File-2 contents

This program assumes that fI1.zxt contains "File-1 contents" and f2.txt contains
"File-2 contents". The merged file out.txt also will contain (not shown) the same
contents.

1.13.9 Random Access - fseek() function

fseek function is used to move the file pointer within the opened file. Using this
function we can access records in a file randomly. The function frell() gives the current
position of the file pointer during run time. The syntax of fseek() is shown below:

int fseek(FILE *fp, long offset, int ref-origin);

Parameters:
fp - file pointer.

Fundamentals of Data Structures with C 97

of fset — location of file pointer mentioned in long int— positive or negative
(explained below).
ref-origin - 0/1/2 (explained below).

The fseek moves the file pointer to a new position based on the following formula:

file pointer = ref-origin + offset

The following table gives the ref-origin values:

Ref-origin value | Constant Location of fp
0 SEEK_SET Beginning of the file °
1 SEEK_CUR Current position of the file pointer
2 SEEK_END End of the file
For example,

(1) fseek(fp, 20L, 0) or fseek(fp, 20L, SEEK_SET) moves the file
pointer £p to a position in the file after 20 bytes in the forward direction.

(2) fseek(fp, -20L, SEEK_END) repositions the file pointer to 20 bytes
backward from end of the file.

Program 1.46
Demonstration of fseek()

#include <stdio.h>
#include <stdlib.h>
void main()
{

FILE *fp;

int c;

fp = fopen("t.txt","r");
if (fp == NULL)
{
printf ("Error in opening file\n");
exit(1l);
}
fseek(£fp,10L, SEEK_SET);
printf ("The contents of file
after seeking 10 bytes:\n");
while ((c = getc(fp)) != EOF)
putc(c, stdout) ;

rewind (£p);

98 Chapter1 » Introduction to C

/* positions fp to the beginning of the file */
fseek(fp, -12L, SEEK_END);

printf ("The contents of file after
seeking 12 bytes from backwards:\n");

/* 12 bytes include the file terminator
characters of 2 bytes */

while ((c = getc(fp)) != EOF)
putc(c, stdout) ;

}
Sample Run

Assuming contents of "t.txt" as:
Bangalore Institute of Technology
The contents of file after seeking 10 bytes:

Institute of Technology
The contents of file after seeking 12 bytes from backwards:

Technology

1.13.10 ftel}() function

The ftell() tells where the file pointer is? It accepts the file pointer of the opened stream
as the only argument. See the below definition:

long ftell (FILE *fp);
The value returned by frell can be used in a subsequent call to fseek.

Parameters:
fp - file pointer.

Return Value:
= On success, returns the current file pointer position.
=> On error, returns -1L and sets errno to a positive value.

To illustrate the meaning of frell take a look at the Program 1.47.

Program 1.47
Demonstration of ftell()

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
void main()

Fundamentals of Data Structures with C 99

{

}
Sample Run

FILE *fp;
int c;

clrscr();

fp = fopen("t.txt","r");

if (fp == NULL)

{
printf ("Error in opening file\n");
exit(1l);

}

printf ("Position of file pointer
before fseek: %d\n", ftell(fp));
fseek (fp, 6L, SEEK_SET);
printf ("char\tpos\n");
while (!feof(fp))
printf ("$c\t%d\n", fgetc(fp), ftell(fp));

/* print first 5 characters */
fseek (fp, 0L, SEEK_SET);
printf ("Printing first 5 characters:\n");
while (ftell(fp) < 5)

printf ("%c", fgetc(fp));
printf("\n");

Assuming contents of t.txt as:
Nanda Gopalan
Position of file pointer before fseek: 0

char
G

SO T O

pos
6

7

8

9
10
11
12

Printing first 5 characters:
Nanda

As demonstrated in Program 1.47, ftell returns the current file pointer position as an
integer that has been used in printf. Notice that the initial value of Sp will be 0 as frell
tells in the first prinif statement. To print the first 5 characters from the input file, we

100 Chapter1 » Introduction to C

have used ftell as an index or pointer to go through the file. We do not increment ftell as
after fgetc the file pointer is automatically incremented and points to the next character
in the file.

1.13.11 Error handling in files — ferror() and perror()

While operating with files there are several occasions for the programmer to make
errors. Every programming language provides built-in error detection and default error
handlers. For example, "divide by zero" is a common type of error that could be
committed in data processing. Even during operations of files programmers may
unknowingly write into a file when it is opened for reading and vice-versa.

C allows you to catch this type of error using a standard function called ferror().
The syntax is shown below:

int ferror (FILE *£fp);

ferror is a macro that tests the given file pointer for a read or write error. If the file's
error indicator has been set, it remains set until clearerr or rewind is called, or until the
file is closed.

Return Value:
ferror returns non-zero if an error was detected on the opened file.

In this category, another useful function is perror that prints to the console error
message for the last library routine that produced the error. It prints the file name, a
colon, and the message corresponding to the current value of errno, then a newline.

Generally, we pass the file name of the program as the argument to perror(). The
example Program 1.48 demonstrates the working of both these functions.

Program 1.48
Catching error using ferror

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
void main()
{

FILE *fp;

int c;

clrscr();
fp = fopen("t.txt","r");
if (fp == NULL)

